17^2=(3x)^2+(4x)^2

Simple and best practice solution for 17^2=(3x)^2+(4x)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17^2=(3x)^2+(4x)^2 equation:



17^2=(3x)^2+(4x)^2
We move all terms to the left:
17^2-((3x)^2+(4x)^2)=0
We add all the numbers together, and all the variables
-(3x^2+4x^2)+289=0
We get rid of parentheses
-3x^2-4x^2+289=0
We add all the numbers together, and all the variables
-7x^2+289=0
a = -7; b = 0; c = +289;
Δ = b2-4ac
Δ = 02-4·(-7)·289
Δ = 8092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8092}=\sqrt{1156*7}=\sqrt{1156}*\sqrt{7}=34\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-34\sqrt{7}}{2*-7}=\frac{0-34\sqrt{7}}{-14} =-\frac{34\sqrt{7}}{-14} =-\frac{17\sqrt{7}}{-7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+34\sqrt{7}}{2*-7}=\frac{0+34\sqrt{7}}{-14} =\frac{34\sqrt{7}}{-14} =\frac{17\sqrt{7}}{-7} $

See similar equations:

| 17=3x^2+4x^2 | | 17=3x+4x | | 5x2−2=2x−76 | | O3=6p+21 | | 4x/3x/3=415.2 | | (−3x+4)​2​​−16=0 | | 6z-7=2z+35 | | 5x=9-9) | | 5x-2=-7x-4 | | 3n-3=n=8 | | 15(y-4)-2(y-9)+5(y+6=0 | | 7y=4-11 | | 2c-1=11c= | | Y-10+x+20=180 | | -2n^2-4n+3=0 | | x-41=2×(x-180+41) | | 11x=2x^2-21 | | n/6=24/18 | | 8=3q=21 | | a-6+6=12+6-a | | 3/5x=-2/7 | | 7x11-5x6=x | | (15+3x)+(9+8x)=0 | | (e+5)=20 | | 2(3u=7)=68 | | 0.95=4.8x*1.46 | | 2x+3-9x=-11 | | 3^(x+2)=27 | | 1000x=1.0752688172x*930 | | A=92x92 | | 8x+9+2x=43 | | 7x+20+13x-4=180 |

Equations solver categories